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NATTONAl, ADVISORY COMMTITTEE FOR AERONAUTICS

TRCHNICAL NOTE 3463

INVESTIGATION OF THE VIBRATIONS OF A HOLLOW
THIN-WALLED RECTANGULAR BEAM

By Fldon E. Kordes and Edwin T. Kruszewski

SUMMARY

Fxperimental modes and frequencies of an unstiffened hollow beam of
rectanpular cross section are presented, and comparisons are made between
experimentn} and theoretieal froquencies. Theories based on rigid cross
sections were found to be sufficiently accurate to predict the frequencies
of only the lowest three bending modes. For the higher bending modes and
all the torsional modes it was necessary to include the effects of cross-
sectionnl distortions in the calculations.

INTRODUCTION

The vibration characteristics of hollow thin-walled cylindrical beams
have been investipated theoretically in references 1 and 2 for both bending
and torsional vibrations. In reference 1, frequency equations that include
the influence of transverse shear deformation, shear lag, and longitudinal
inertin are derived for the bending vibrations of cylindrical beams with
constant wnll thickness. In reference 2, frequency equations that include
the influrnce of warping restraint and longitudinal inertia are derived
for the torsional vibrations.

In order to provide an experimental check on the theories of refer-
ences 1 and 2, vibration tests were conducted on a hollow beam of rectan-
gular crocs aection with no bulkheads. The purpose of the present paper
is to prescent these experimental results and to show the accuracies that
ean be ohiained from the theories of references 1 and 2 when the effects
of cross-scetional deformation are taken into account by the methods
presented in references 3 and h.
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FEXPERIMENTAI, INVESTIGATION

Deseription of Specimen

The speceimen wsed in the experimental investigation (see fig. 1) was
constructed from four aluminum sheets of equal thickness welded together
along their lengths to form a uniform rectangular tube and contained no
stringers, weh stiffeners, or bhullheads. The beam, whose dimensions are
shown in fimire 1, had a widih-depth ratio of 3.6 and a plan-form aspect
ratio (length divided by width) of 13.3. The material from which the
specimen was conatructed, 3005 aluminum (formerly desipgnated 58), had a

modulus of elasticity of 10.1 X 106 pounds per square inch, a shear mod-
S q ’

ulus of 3,81 x 100 pounds per cquare inch, and a density of 0.098 pound
per cubic inch.

Test Setup and Instrumentation

The peneral teast setup is shown in figure 2. The test beam was sup-
ported at rach end by means of long flexible wires attached to the center
line of the top spar web. This tyvpe of support offered only negligible
resistance to small displacements of the beam in the horizontal direction.
For small amplitudes of vibration in the horizontal direction, therefore,
the specimen ung considered to be essentially free-free. A fitting for
connecting the sholker to the beam was attached to one cover of the beam
at n point sliphtly off center in both the chordwise and spanwise direc-
tions so that aymretrical and antisymmetrical bending and torsional modes
could be exciterd without relocating the shaker attachment point.

An electromaenetic shaker monmted on a rigid backstop was used to
vibrate the beam in the horizontal dircetion. The frequency of the
exciting foree was controlled by a continuously variable frequency audio
oscillator ubhich was connected to the shaker drive coil through a 500-watt
power amplificr. The direct-current power for the shaker field was
supplicd by n motor-generator unit. The shaker system was capable of
developing n mavimum undistorted force output of 26 pounds from 20 to
1,000 cycles per arcond and a maximum double amplitude of l/h inch.

In order to obtain more accurate readings of the frequency values than
were possible from the oscillator scale, a Stroboconn frequency meter was
used to meagsure the frequency of the oseillator signal. 1In this frequency
meter the oscilintor output flashes a stroboscopic light onto a series of
graduated dicks revolving at controlled speeds. The disk speed and hence
the frequency of cibration are known to be accurate within 0.01 percent.
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A crystal phonograph pickup was used to study the motion of the
vibrating beam. The pickup has a voltage output that is proportional to
the velocity of motion and is cssentially linear from 50 to I 000 cycles
per second. A cnathode-ray oscilloscope was used to indicate the output
of the pichkup.

Experimental Test Procedure

The test berun and the electromagnetic shaker were mounted as shown
in figure 2. ‘The pickup was placed on a stand so that the probe just
touched the beam. As a preliminary study of the vibration characteristics
of this test beam, the force-amplitude controls of the shaker system were
set at a constant value and the frequency was slowly increased from 20 to
(G50 eyeles per second. During this study, each resonant frequency where
the amplitnde of vibration (as viewed on the oscilloscope) passed through
a maximum was noted. As an ald in obtaining these various resonant fre-
quencies, the phase angle between the applied force and the velocity of
the beam wag observed. This phase angle was determined by viewing the
lissajons nllipae shown on the oscilloscope when the pickup output was
appliecd Lo one axig and the oscillator output to the other.

After the preliminary study was,completed, each of the observed
resonant. frogpmencies was reestablished and held constant while a survey
af the eorvesponding mode shape wons made. This was done by moving the
pickup »iong the beams and noting the location of the null points and
the phase of the motion between the null points. The type of vibration
and the relative amplitude of the various points on the test beam were
thus eatablished. In this manner, all beam bending and torsional modes
in the frequency range from 20 to 650 cycles per second were identified.
Once the mode of vibration was identified, the frequency was read from
the frequency meter.  As might be expected, resonances not assoclated
with beam bending and torsional modes were observed during the test.
These resonances were presumably due to local effects and are not con-
sidered in this report.

Fxperimental Results

In the frequency range coverced by the tests, the first ten natural
beam frequencics (five bending and five torsional) were obtained, and
these frequeney values and the nodal patterns corresponding to each of
the naturn) frequencies f  are shown in figures 3 and 4. These patterns
for all but the fifth torsional mode are shown only for the front cover
since thev were egsentially the same in both cover sheets. 1In the fifth
torsional mode 1he nodal pntterns in the two covers were different; both
patterns are shoun in fignre . The nodal patterns for all the symmetri-
cal modes (beth bending and torsional) and for the lowest antisymmetrical
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bending and torsional modes nre definitely beam nodal patterns. For the
remaining antisymnmetrical modes, however, the nearness of the shaker
attachment to the center line of the beam evidently caused a shifting of
the nodal patterns. The temndency of the nodal lines to shift 1is probably
increased by the absence of internal stiffening members in the test beam.

Amplitnde surveys made to establish the nodal shapes disclosed an
interesting phenomenon pertaining to the distortions of the cross section.
For the higher bending modes, the deflections at the center line of the

cover were from 1% to 3 times ns great as the deflections of the corners

of the tube. No such large distortions of the covers were evident for
the torsionnl modes.

THEORETICAL CATCULATIONS AND COMPARISONS
WITH EXPERIMENTAI, RESULTS

Pending

A solntion for the transverse vibmtions of hollow thin-walled beams
was presented in reference 1. The first five natural bending frequencies
of the test boam were calculated from the frequency equations derived in
reference 1 and are presented in table I along with the experimental fre-
quencies and the frequencies calculated from elementary beam theory. The
frequency cquation and the values of the parameters used for these calcu-
lations are shown in appendix A.

Comparicon of the results presented in table I shows that for all
modes the treqguencies calculated from the equations of reference 1 are in
better agreement with experimental frequencies than with those ecalculated
from elementary bheam theory. TFor the first three modes, the agreement
between the ovperimental frequencirs and those ecalculated from reference 1
o within 1" percent.. For the higher modes, however,; the agreement is
not very ~nbicfoetory,

Fxamination of the assumptions used in the derivation of the frequency
equations In roference 1 shows that, although the influence of transverse
shear, shear loae, and longitudinal inertia are included, the results are
applicable only to eylindrical beams whose cross sections remain relatively
undistorted. The particular test beam used in the cxperimental investiga-
tion contained no bulkheads, stiffeners, or stringers to help prevent
crosg-sectionnl distortions. Furthermore, as mentioned in the preceding
scctlion, resnutts of the amplitude surveys showed that, for the higher modes
of bending vibration, the covers of the beam vibrated out of their plane
with considernble amplitude. “he fact that these local cover or panel
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vibrationz can have apprecinble offect on the beam vibrations is substan-
tinted in reference 3 where it is chown that inertial coupling exists
between the Joral panel vibrations and overall transverse vibrations. The
result of this conpling is n reduction of the bending frequencies calcu-
lated for ripgid cross sections. As 1s found in reference 3, this reduc-
tion is dependent on the uncoupled panel frequency (frequency of panel
vibration with the overall beam vibration restrained). Methods are
included therein for determining this uncoupled panel frequency and for
eatimating the reduction in bending frequencies due to panel vibrations.

The welhod of reference 3 has been used in appendix A to correct the
ealculated beam bending frequencies of the test beam for the effects of
panel distortiongs. These corrected frequency values are shown in table I.
From the results in this table it 1s seen that the effects of panel dis-
tortion are neglipitle for the first mode but become important for the
hisher modes.  Alao, the corrected frequencies are seen to compare very
well with the experimental freqnencies.,

Torsion

A solution for the torsional vibrations of a hollow thin-walled beam
was presented in reference 2. From tke frequency equations derived in
this relcrance the first five torsionnl frequencies of the test beeam were
calculated as shown in appendix A, 'These calculated frequencles are pre-
sented in tahle 1T along with the experimental frequencles. For complete-
ness the frequencies calculated from elementary torsion theory are also
included in tavle 11.

Althoush the frequency equations of reference 2 include the effect

of warping restraint and longitudinal inertia, examination of columns (é)
an‘i (U) in tallr TI shows that the results from these equations do not

predict the natural torsional frequencies with any degree of accuracy.
The calenlated frequency for the first torsional mode differs from that
fonunt cvperiments 11y by more thon 25 percent, whereas the calculated fre-
qiency Lo the i mode da alrost three times as large as the measure
frrequene.

Since the analysis used in reference 2 is based on the assumption
that Lhe distortions of the crosg scetions are negligible, the large dis-

crepancics boturen calculated and experimental torsional frequencies could
be due to crocg-osecetion distortions.

Re-ference 3 showed that panel tlexibllities can have an effect on
torsionnl freqnencics similar to the coupling effect described for bending
vibrations., For the particilar test beam, however, the effects were found
to be small - only a 3-percent r-eduction of the fifth torsional fregquency.
The reason for this emall reduction is that, in the particular type of
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panel vibration considered in reference 3, the corners of the beam do
not move with respect to each other; ro shearing distortions of the cross
section are allowed. Since a beam in torsional oscillation is subjected
to cross-sectionnl shearing forces, cross-sectional shear deformaticns
should be considered.

The influcnce of shear flexibility of cross sections on the torsional
frequencies of box beams was investigated in reference 4. As could be
expected, one of the quantities on which this influence is dependent 1is
the effective cross-sectional shear modulus of the beam cross section Gg.

The test beam eontaing no internal bulkheads; therefore, the shear stiff-
ness of the cross section i1s due only to the Vierendeel truss action of
the rectangular bent formed by the walls of the tube. On the basis of

the assumption of rigid joints at the corners, the effective shear modulus
of a bent is determined in appendix B. From these results the value of

G, of 2,500 pounls per square inch for the test beam is calculated in

appendix A.

On the basis of this value of G,, the torsional frequencies of the
test, beam have been recalculated in appendix A by the method of reference k.

BExamination of these results showg that, with the inclusion of shear
flexibility of the cross section, there is a considerable reduction in the
calculated frequencies. The percentage reduction, however, is still short
of that necessary for good sgreement between calculated and experimental
frequencinrg. Since the tube consisted of aluminum sheets welded along the
corners, a poor or incompletely penetrating weld would result in flexible
corner joints and, consequently, in n reduction in the value of Gg from
that calculnted by use of the equation derived in appendix B. In order to
check the completrness of the weld, sections were cut from corners of the
test. beam and were prepared for microscopic study. A photomicrograph of
a typicil section of the weld 1s shown in figure 5 and it can be seen
that, althouph the weld itself iz sound, the depth of penetration is less
than half the Jdepth of the materinal. Thus, the assumption of rigid corners
used in the caleulation of G, would not be expected to apply to the test

beam, and the ecaleulated value of  Gg  would be too large.

In order to obtaln a value for the effective shear modulus of the
cross section that is appropriate for the test beam, a value of G, was

determined experimentally. Several l-inch slices were cut from the test
beam and londed dinpgonally, and the change in length of the diagonals was
measured. From the results of these tests, the measured values of Gg

were found to ranpe from 1,080 to 1,520 pounds per square inch with an
average value of 1,290 pounds per square inch. This average value of Ge

was then used and the calculation based on the analysis of reference L
was repeated.
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Results of calculations for this measured value of G, are shown in
table II. Tt is secn that pood agreement exists between these frequencies
and the experimental frequencies. These results indicate that, once the
effective shear modulus of the cross section is known, the results of ref-
erence 4 can predict natural torsional frequencies with good accuracy.

It should be pointed out that the final results based on reference 4
do not include the effect of longitudinal inertia. The effects, however,
were shnwn in reference 2 to be negligible for the values of plan-form
aspect ratio of the test beam.

CONCLUSIONS

The first ten natural beam modes and frequencies obtained from vibra-
tion tests of a hollow beam of rectangular cross section are presented.
From comparisons made between these experimental and calculated frequencies,
the following conclusions can be made:

1. The frequency equation derived in NACA Rep. 1129 predicts the fre-
quencies of transverse vibration of tubes with reasonable accuracy as long
as the effect of panel vibrations is gmall.

2. loeal panel vibrations can have an appreciable influence on the
higher transverse modes of vibrations of tubes. The analysis of NACA
TN 3070, however, predicts the eorrection for the effect of local ranel
flexibilities very well.

5. For beams, such as the test beam, which have very flexible cross
sections, the torsional frequency equations derived in NACA TN 3206 are
not directly applicable.

}. The effect of local panel vibrations on the torsional frequencies
of the test beam was small. The effect of shear distortion of the cross
section, however, was large because of the absence of bulkheads, but the
effect of this distortion on torsional frequencies 1s predicted very sat-
isfactorily by the theory derived in NACA TN 3h6h.

Langley Acronautical laboratory,
National Advisory Committee for Aeronautics,
lanpley Fleld, Va., April 13, 1955,
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APPENDIX A

CALCULATION FOR BEAM VIBRATION MODES
Beam Bending Modes
The frequency equations for symmetrical and antisymmetrical free-
free veam bending modes are given by equations (41) and (52), respec-

tively, in reference 1 and are repeated here for convenience.

For the synmrtrical modes

and for the antisymmetrical wmodes

o 2, 2 © 2
k 2 ; An
k2 S <g> By 2 Ay ; + 3] =0 (A2)
n L

. RT
n 2,6 \nt/ U, a2 Ag T

where, for eylindrical beams of rectangular cross section,

k
) sinh 125 KSBjV(B—a - l)
Ny Al o K P P + tanh &L l—{—S—Bi - lsz = 0 (A3)
Ak 2 )lk(;“j_ 1 b1 kS 2 K 2
s ' cosh 5 R—Bi
uLu 2

In these equations ki, 1s the froquency parameter defined as sz = EE—UB
where Wy, is the natural circular frequency in radians per second.

In this section and in those that follow, the equations presented
and the symbols used nre the same as in the reference for the particular
section. Therefore, the reader is cautioned to observe that the defini-
tions for symbols are not interchangeable. For this reason, most of
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the symbols are defined gseparately in each section. The following
gymbols, however, are the same throughout:

a

i,n

The various parameters

half-depth of beam measured from median line, 1.00 in.
half-width of beam measured from median line, 3.60 in.
distance along perimeter of cross section

wall thickness, 0.246 in.

half-length of beam, 47.86 in.

perimeter of cross section, 18.4%0 in.

modulus of elasticity, 10.1 x 106 1b/&n.2

shear modulus of elasticity, 3.81 x 106 1b/in.2

integers

numerical values for test beams are fiven as follows:

Ag

mass of beem per unit length, 1.15 X 1072 lb-secz/in.2

cross-sectional area, 4.52 in.?

N

minimm moment of inertia of cross section, 3.87 in.

frequency coefficient, 1.2hwg X 1072

I
coefficient of shear rigidity, Y - 6.74 x 1072
12AgG

1
cocfficient of rotary inertia, _i% - 1.9%2 x 1072

4

16Ty
geometrical parnmeter, [—= = 0.431

Agp

n

o 2(2\V : _y\1/2
parameter, Vﬁe - kR12<%> kp2 = Q? - 1.513kg2 x 10 h)

effective shear-carrying area, (ygt sin28 ds = 0.984 in.2

given in reference 1 are defined and thelr
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An Fourier coefficient.,
) e e
2 hsin 0 aln €S 45 - 0 (n even)
p p
- 1-i(5 cos 1.2%n (n odd)
0 inclination of normal with vertical

The nurerical values given for the aforementioned various parameters
were uced, and the natural frequencies of bending vibration were calcu-
lated from equations (A1) and (A2) by trial.

T.ocal Panel Vibration

The procedure recomnended in reference 3 for estimating the effect
of local panel vibrations on the vibrations of box beams was used to
corrvect the calenlated beam bending frequencies of the test beam. These
corrections were made as follows:

(1) The values of the "uncoupled" bending frequencies were taken as
the values given in column (3) of table*I.

(2) Ry usinr the width-depth ratio of 3.6 and the thickness ratio
of 1, the values of the uncoupled member frequency of 833 cycles per
second and Lhe coupling constant of 0.58 were obtained from figures 7
and 8 of reference 3.

(3) The values of the coupled frequencies corresponding to the values
of uncoupled frequrncy shown in column (j) of table I were then determined
from figure 6 of reference 3. i

Peam Torsion Modes

The frequency equations for the free-free beam torsion modes
(eqs. (h0) and (91) of ref. 2) for the symmetrical modes are

1
=1 =0 (Ak)
NI]

© 2
k:[vg L + k41\2 }_ (é)
_ 3,5

n=17 nx
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and for the anticymmetrical modes are

(]
[

o2 e ‘ 2 L
e LT — fn (8) 2 Y w1 (as)
EID rh n-2,h,0 ¥b2 F 1607 n n-2,4,6 n2Nn b

In equations (Ah) and (AY), kg 1is the torsional frequency parameter and

1,12
in cdefined as  bp —£—~an2 where o is the natural circular frequency
I 1 T

*
v

in radians per second.

For eylindrical beams of rectangular cross scction,

ﬂBi b
. ‘ cosh —+ & =
., (in)? 14 (ég_:.gg)? ab + -+ 8 a+ b _

) s

& at h(a + b)2 nBy sinh nBy

8
’
b
coth 5}1 é—k,j.g (AG)

Thee various parameters appearing in equations (Ak), (AS), and (A6)
ng defined in reference 2 are piven as follows:

n distance from centroid of cross section to tangent to the
median 1ine of wall thickness
. - 2 h
" miss density of beam, 8.16 x 10 > 1v-sec/in.
Aoy croas-sectional area enclosed by median line of wall thickness,
hab - 1440 in.2
I minimim mowent of inertia of cross section about
J !
y-nxis, 3.87 in."
1. maximum moment of inertia of cross section about
z-axis, 27.90 in.
Vp mass polar moment of inertia per unit length,

W(Iy 4 Iz) = 8.08 x 1077 1b-sec?
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2
Yo7t 11.06 in.t

J torsional stiffness constant, -
|
kT:r66&w,xlO‘
kLI coctficient of longitudinal inertia, o) 0.227
1,12
P
Ep° |
K parameter, 2P~ 0.626
G1.2
ta actual wall thickness
T T a2 o . 1/2
By parameter, J@Qig - kLIE(%> kg? =<?.3)112 - o.ozong2>
By = Bi for 1 -0
Ko Fonrier constant, %lj:p ds = 1.565 in.
>
K, Fourier coefficient,

-%.3%04 sin 1.27n (n even)

2 p cos 2nms g
& p

The roots of the frequency equatlons (A4) and (A>) were obtained
py trial.

-0 (n odd)

Shear Deformation of the Cross Section

The analysis of the torgional vibration of box beams where the effect
of shear distortion of the cross section is included is presented in ref-
erence . The appropriate frequency equatlion, based on a four-flange box
beam, for symmetrical vibration is

2
2 k' 2
. (k“o 1.2 Jir™ - e (kb°2 ) k'rz)
T ST N \ —o
n 3K a o wrfe P 2 ) » K K%kq” 2 2 2 >
- ;F(nn) VK (kl,o - ke M)(nn)' + [km - ;—__C—g‘——i"_(kho? . \}(m) - ke (khOQ - Ky \
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and for antisymmetrical vibration is

’

2 2
2 °
: Ry
2' o A 1 - cr -
n-1,%,5 I

P } 2, 2 ’
K2 af » n \ 2 Ky 2 2
_ X -;<“_;) + K [k“() - ky M] ("—2”} + ’k"O - ]—“k:[% - ——_'(kbo - ey )

1 -¢” . c B

13

(a8)

where
2 2
A parameter, 9—T1~§— = 0.829
tab
. t -
A area of flange, g(a + b)) = 0.377
2
B parameter, (a + )" 1.468
hab
I, - Iy
C inertia coupling constant, E——:fi—-" 0.757
’ z J
Ge effective shear modulus of bulkheads
FA 1l/2
K restraint-of -warping parameter, —Fat+tb_ooyx 10'5>
hore b
2
K £ fficient ol
requency coe cien Wy [ ——
T q N y T GJ
kb frequency coefficient for uniform shear mode,
0 ,
g 1/2
—_ - 18.65) /
1 - ¢? ,
M parameter, —a. - (1 - AC—) - 2.68
L - e B
GeL2 a + b
S hulkhend stiffness parameter, = 7.95
Gab t
Up natural torsional frequency of four-flange box beam

The effective shear modulus of the cross section is determined in

appendix B of this paper for the test beam and is given by
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where

and

is Poisson's

ratio.

: D 2,540 1b/in.2
ab(a 4+ b)

NACA TN 3463

(A9)
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APPENDIX B
FFFECTIVE SHEAR MODULUS OF CROSS SECTION

In this appendix the effective shear modulus of a rectangular bent
is determined. For the analysis, the members of the bent are assumed to
be plate elements nand the corners are assumed to remain right angles.
The deflections and bending moments due to an applied load P are as
shown in the following sketch:

z A b
Aﬂj Pa l<—— E;;,l
7 2 ob

— c—

, = = —> p
1 o e
2a l I jL——? —1} ET‘J

g
o

The strain energy for a bent of unit width is

2 b 2
U =2 a}é d§+§ff’f_§dg=ﬁ_2_(a+b) (B1)
D Jo \? DJo \2b 6D

where D - _“__232___ and ¢ and t are coordinates. In terms of the
121 - V2
angle 7y and the effective shear modulus of the section G, the strain

energy for a it width is

U = 26, 7°ab (B2)

The relation between the angular displacement y and the load P
can be obtained from equation (Bl) by the use of Castigliano's theorem,
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and their relation is
vy &
y = é—a—(a + D) (B3)

Substituting equation (R3) into equation (B2) and equating the
energy expressions from equations (Bl) and (B2) gives the following
expression for the effective shear modulus of the rectangular bent:

. 3D
G, = —22 __ Bl)
¢ ab(a + b) (

For the test beam, the shear stiffness of the cross section 1is due
to the truss action of the rectangular bent formed by the tube walls.
Thus, the effective shear modulus of the beam cross section is given by
equation (B).
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TABLE I

FREQUENCIFES OF BENDING VIBRATIONS

NACA TN 3463

Experimental
frequency,
cps

572

Calculated frequencies, cps

Undistorted cross-

section theory

Elementary
bending Reference 1
(3 @
S 70.2
197 187
385 348
638 545
953 761

Coupled Percent

bending-panel | difference
theory (vased on

(ref. 3) experiment)

®) %)

70.2 2.2

183 -7

328 -

gt 2.2

586 2.5
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Mode
cps

®
301
Lok
455

530
648

AL e o+

@

Experimental
frequency,

TABLE II

FREQUENCIES OF TORSIONAL VIBRATIONS

Elementary
torsion

&)
376
751

1,128
1,501

1,880

Undistorted cross-
scction theory

19

Calculated frequencies, cps

Reference 3

Flexible cross-
gsection theory (ref. L)

Calculated

Ge

®

343

539
627
706
825

1
Percent
difference
M""’v a (baged on
ea;ure experiment)
e
©® @
316 5.0
435 77
485 6.6
561 5.8
705 8.9
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Figure 1.- Test specimen.
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(a) First symmetrical mode.
f- 68.7 cps.

I
(b) First antisymmetrical mode.
f=- 184 cps.

»

(c) Second symmetrical mode,
f= 342 cps.

\ /A

) Second onhsymmetncol mode.
f= 464 cps.

[ [ ]

- ... 9572 -w-——*ﬁl

(e) Third symmetrical mode.
f= 572 cps.

Figure 3.- Nodal pattern for first five bending modes of test beam.
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(o) First antisymmetrical mode.
f= 30l cps.

(b) First symmetrical mode.
f= 404 cps.

— /—“\R\\

) Second cnhsymmetncol mode.
f= 455 c¢ps.

{(d) Second symmetrical mode.
f= 530 cps.
—— Front cover
---- Back cover

|

T —— -

(e} Third antisymmetrical mode.
f= 648 cps.

Figure U4.- Nodal pattern for first five torsional modes of test beam.
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Flgure 5.- Photomicrograph of a typical section of corner welds.
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